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Abstract: We address controlled CdS nanoparticle formation by tuning experimental synthesis conditions.
To this end, a bivariate population balance equation (PBE) model has been developed based on time
scale analysis, to explain the mechanism of nanoparticle formation in self-assembled templates. It addresses
the process of mixing two water-in-oil (w/o) microemulsions, each containing a predissolved reactant in
the microemulsion drops. Brownian collision and coalescence of two water drops of nanometer size results
in mixing and exchange of reactant molecules, leading to chemical reaction. The water insoluble reaction
product nucleates to form a nanoparticle in an individual drop, which subsequently grows internally by
consuming the excess product and by coalescence-exchange with other drops. Finite rates of nucleation
and coalescence-exchange are accounted for in the PBE, while the rates of reaction and internal growth
of nanoparticles are found to be instantaneous. Experimentally proven binomial redistribution of reactant
and product molecules upon drop coalescence is implemented in the present work. This results in a very
good prediction of experimental data of the mean aggregate number (MAN) and hence size of CdS
nanoparticles. Both our model and Monte Carlo (MC) simulation quantitatively capture the reported variation
of MAN with molar excess of Cd2+ concentration and microemulsion drop size. Our results together with
previous experimental data establish that usage of stoichiometrically five times or more of excess Cd2+

concentration can cause surface adsorption and desirable enhanced emission intensity of CdS nanoparticles,
without altering particle size. We also propose a simplified and computationally efficient univariate PBE
model. The univariate model gives very fast (in minutes) and accurate estimates (for low reactant
concentrations) of the number and mean size of CdS nanoparticles. Time-scale analysis offers a good a
priori choice of the appropriate model based on range of reactant concentrations.

1. Introduction

Nanoparticles of various materials have been synthesized in
the liquid phase using self-assembled surfactant templates1,2 and
other techniques. Nanoparticle formation begins with energeti-
cally stable clusters, having a distinct magic number of monomer
units. For example, CdS crystallizes in the form of (CdS)13,
(CdS)16, (CdS)33, (CdS)34, (CdS)57, (CdS)81, and so forth.3,4

Various analytical techniques (powder X-ray diffraction, UV-
vis spectroscopy, mass spectrometry, etc.) and ab initio calcula-
tions suggest that these clusters crystallize in cage-like forms,
similar to the case of fullerenes.3 Molecular simulations have
been carried out to identify energetically favored structures for
these clusters. This is done in a way so as to fit the calculated
electronic properties (based on these structures), with experi-
mental property data.5 Subsequently, the clusters grow in

solution and form nanoparticles, having crystalline structures
similar to those of bulk crystals.6

A recent molecular simulation study showed the very early
stages (time scale of nanoseconds) of nucleation of stable ZnS
clusters from an aqueous solution.7 Together, these simulation
studies are concerned with the formation of clusters from their
monomer units7 and cluster structure-property correlations.5

However, from these studies, it is not known how the monomer
is formed by reaction in a typical synthesis method and how
the clusters grow in solution by consuming monomers to form
the final nanoparticles. Therefore, it will be very important to
have a model which correlates various experimental conditions
to the formation of clusters, and their growth, by accounting
for a sequence of processes like reaction, nucleation, and growth
of nanoparticles. Hence, we would like to develop a model to
predict mean nanoparticle size and size distribution, which, on
combining with previous molecular modeling studies for
clusters, will give the complete means of tuning experimental
synthesis conditions to desired electronic and optical properties
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of CdS nanoparticles. Thus, the present work can bridge the
knowledge of nanoparticle formation to their properties.

Furthermore, previous simulations predict only a single cluster
or nanoparticle size. However, the present model should be able
to capture the formation of clusters of various sizes and their
dissimilar growth rates, leading to information about the
complete size distributions, seen experimentally. Finally, we aim
to develop computationally more efficient models, compared
to time-consuming molecular simulation studies.

One of the widely studied liquid-phase templates is a water-
in-oil (w/o) microemulsion solution, which consists of surfactant
stabilized water drops of nanometer size, dispersed in an oil
medium. In this paper, we are concerned with only self-
assembled templates and will use the termdrop to denote a
spherical water drop of a w/o microemulsion system. Reactants
necessary for nanoparticle formation are introduced into the
drops, either by external mass transport or by mixing two
microemulsions having predissolved reactants. The drops collide
with each other due to Brownian motion and occasionally
coalesce by opening of their surfactant layers.8,9 The resulting
coalesced form of two drops is called a dimer, which has a very
short life time (≈ 25 µs).10 In the dimer, the contents of the
drops are well mixed due to their small size whereupon reaction
takes place. Subsequently, the dimer redisperses into two equal
sized daughter drops into which the reactant and product
molecules of the dimer are redistributed. The insoluble reaction
product then nucleates to form a solid particle, which grows
inside the drop. Importantly, reaction, redispersion, nucleation,
and growth are confined within the drops. As a result, size
controlled nanoparticles can be formed by easily changing drop
size, which is a further motivation of the present study.

Therefore, we focus on developing a mathematical model for
microemulsion mediated synthesis of nanoparticles in this paper.
It should predict the mean aggregate number (MAN), a measure
of nanoparticle size, and the complete size distribution as a

function of various process variables, like drop size, reactant
concentration, and molar ratio of reactants.

2. Background on Microemulsion Mediated
Nanoparticle Modeling

There are various methods of nanoparticle synthesis using
w/o microemulsions, which differ from one another in the way
reactants are introduced into the drops. These methods can be
broadly classified into two types, employing either one or two
microemulsion solutions. In the first type, one of the reactants
is predissolved in the drops and another reactant (in liquid or
gaseous form) is added directly into the microemulsion solution.
The latter diffuses into the drops through the continuous oil
medium and reacts with the predissolved reactant. For example,
CaCO3 nanoparticles were produced by sparging CO2 gas into
a w/o microemulsion solution, which contained a predissolved
Ca(OH)2 solution.11 The second method, in contrast, employs
two microemulsion solutions, each one having a predissolved
reactant. The two solutions are then mixed, whence coalescence-
exchange of drops brings the two reactants together in the dimer
(Figure 1). This forms an important and often the only synthesis
route to some nanoparticles. Materials like silver halides,12,13

metal sulfides,14-17 metals,18-20 etc. were among many others
synthesized by this method.

Irrespective of the route followed, nanoparticle formation
involves reaction inside the drops, followed by particle nucle-
ation and growth. Nevertheless, coalescence-exchange of drops
continuously changes the distribution of molecules in drops,
thus affecting all the elementary processes, which in addition
occur simultaneously.
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Figure 1. Schematic of the method of mixing and reaction of two microemulsions for synthesizing nanoparticles.
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It is, hence, essential for a model of nanoparticle formation
to include both the correct redistribution mechanism of reactant
and product molecules during coalescence-exchange and use
validated kinetic rate expressions for elementary processes.
Natarajan et al.21 accounted for a finite rate of only coalescence-
exchange in their population balance equation (PBE) model for
the single microemulsion method, with the assumption that all
the other processes are instantaneous. They used the unrealistic
cooperative redistribution mode for redistribution of molecules.
Bandyopadhyaya et al.22,23 and Ethayaraja et al.24 modeled the
single microemulsion problem accounting for both finite rates
for nucleation and coalescence-exchange. Nucleation rate in each
drop was calculated individually by considering the statistical
distribution of molecules over the drops. Based on time-scale
analysis, they showed reaction and growth are instantaneous in
comparison and classified all the drops into only two kinds:
drops with or without a nanoparticle. PBEs and their moment
transformation were written for both these populations, and they
successfully predicted average particle size and variance of
nanoparticles obtained in experiments.

The models described above for a single microemulsion
method were based on univariate PBEs, because drops were
identified by a single state variable, namely, the number of
product molecules in each drop. This was possible because the
rate of coalescence-exchange of drops was faster than the rate
of addition of an external gaseous or liquid reactant (A). Thus
as long as reactant B was present in the system, reactant A
molecules which diffused into the drops could redistribute very
fast by coalescence-exchange with some other drops, wherein
it reacted with B. Therefore, each drop was characterized by
only the product molecules, leading to the univariate PBE model.
However, in case of the other route of mixing two microemul-
sion solutions, both the reactants are present in the mixed
solution to start with itself (but in different drops). Therefore,
as coalescence-exchange brings the two reactants together, it is
necessary to account for the evolving distribution of both
reactant and product molecules in drops as a function of time.
Thus, modeling this synthesis route would require multivariate
PBEs. To this end, Kumar et al.25 have recently reported a
comprehensive bivariate PBE model for a system of two reacting
microemulsions. They considered drops of seven classes, with
finite rates of coalescence-exchange and nucleation. Assuming
reaction and growth are instantaneous, drops were identified
by two variables: number of one of the reactant and product
molecules. They, therefore, extended the univariate model of
Bandyopadhyaya et al.22,23developed for a single microemulsion
system to a bivariate model for a system of two microemulsions.
However, Kumar et al.25 used the simple but unrealistic
cooperative redistribution in coalescence-exchange of drops. So
their prediction of experimental data was merely qualitative.

In general, the minimum number of variables needed to
classify drop populations can be decided by time scale analysis
of all the elementary events in nanoparticle formation. It may
then be necessary to write PBEs with more than two variables.

For example, when the rates of reaction and growth of
nanoparticles are comparable to nucleation and coalescence-
exchange, then four variables (both the predissolved reactants
and product in liquid and solid form) are required to define the
state of each drop. If one of these two rates is instantaneous,
three variables are sufficient. However, PBE models with three
or more state variables become complicated and difficult to
derive due to combinatorial complexity. It is in this context that
parallel efforts in Monte Carlo (MC) simulation are useful. At
the cost of large computational times, MC simulation can handle
any number of state variables and also incorporate a complex
functional dependence of rate or redistribution modes on various
system parameters. Indeed MC simulation has been carried out
to simulate nanoparticle size distribution.26-31 Bivariate PBE
models as well as MC simulation have been used in other areas
of particulate processing as well, for example, for describing
coagulation and sintering behavior of particles in a flame
reactor32 or for kinetics of emulsion drops in extraction involving
liquid emulsion membranes.33

Redistribution of molecules, in principle, can be binomial or
cooperative in nature. It is well-established that the kinetics of
coalescence-exchange of molecules in w/o microemulsion
systems follows the binomial redistribution mode.34-36 Hatton
et al.37 derived univariate PBEs using various redistribution
modes to interpret exchange kinetics of water drops from their
model. However, they did not use this information to model
nanoparticle formation.

The aim of this paper is, therefore, to develop a general
bivariate PBE model to quantitavely describe nanoparticle
synthesis on reacting two w/o microemulsion solutions. It should
incorporate a correct description of events with finite rates, with
an accurate redistribution mode (binomial) for the exchange of
molecules. The model results will be compared with the
experiments of Lianos and Thomas14 and both new and
previously published27 MC simulation results. The PBE model
and MC simulation together will give further insight into the
role of various operating variables on mean nanoparticle size
and complete size distribution. Further analysis will also be done
to derive a computationally efficient univariate model and
examine the regime of experimental conditions in which it is
applicable. Thus, one would be able to review the need and
use of univariate and bivariate PBE models for predicting the
nanoparticle synthesis process.

3. Population Balance Models

We have developed a general model that can be extended or
modified to explain various methods of producing nanoparticles
using w/o microemulsions or other forms of self-assembled
templates, as appropriate. In particular, we focus on the method
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1996, 12, 2670.
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of mixing two reactive microemulsions, which necessitates
multivariate PBEs. The mechanism is shown as follows:

A single drop may have all the four components [A, B, C(l),
and C(s)] coexisting together, which necessitates four state
variables for each drop. However, if reaction of A and B and
growth of C(s) by consumption of C(l) are instantaneous, then
only two variables are sufficient. In the following, justification
of this possibility leading to bivariate PBE is discussed based
on time-scale analysis.

3.1. Time-Scale Calculations and Analysis.1. In general,
precipitation reactions are extremely fast and can be treated as
instantaneous.22,23,38For the specific case of CdS, this time scale
(τr) is of the order of 10-8 s.39 Compared to the lifetime of a
dimer (τd ∼10-5 s),10 reaction is hence instantaneous. This
implies that reaction is completed in the dimer itself, and only
product molecules [C(l)] and excess reactant molecules (either
A or B) are to be redistributed in daughter drops. So reactants
A and B will not coexist in a drop.

2. The time scale of growth of the C(s) nanoparticle by
consuming a liquid C(l) molecule in a drop (τg) calculated39

using the Smoluchowski40 equation is of the order of 10-10 s.23

3. Nucleation rate is calculated using classical nucleation
theory for homogeneous nucleation. In a drop havingi number
of C(l) molecules, the nucleation rate is given by23

where σ is the interfacial tension between solid nuclei and
surrounding drop liquid,Vm is the volume of one C(s) molecule,
λ is the supersaturation ratio of C(l), andn* is the critical number
of C molecules in a nucleus. The time scale of nucleation (τn)
is calculated from the inverse ofkn(n*). For CdS particle
nucleation,τn is of the order of 10-3 s.

Therefore, growth of the existing nanoparticle in a drop by
consumption of liquid C(l) molecules is instantaneous compared
to the rate of formation of a second nucleus in the same drop.
So C(s) and C(l) do not coexist in a drop. Therefore, a drop
can have only one particle at the most, with or without one of
the reactants (either A or B) in addition.

4. The rate of collision (qd) of two spherical drops of volume
V1 andV2 is given by Smoluchowski equation40 as

For equal sized drops, eq 2 reduces to

For two classes of drops with number densities (number per
unit volume of microemulsion)n1 andn2, the rate of coalescence

is given byâdqdn1n2. âd is the coalescence efficiency of drop-
drop collisions. For a number density of 1018 cm-3 of drops,
the time scale of coalescence-exchange of drops (τc )
1/âdqdNdrop) is of the order of 10-3 s. Therefore, coalescence-
exchange of drops and nucleation proceed at finite and
comparable rates. Conclusions from the above time scale
analysis are summarized in Table 1.

Before mixing, the individual microemulsion solutions have
only two classes of drops: empty and those having a finite
number of either A or B reactant molecules. After mixing,
coalescence-exchange of drops introduces new classes of drops
in the system due to reaction, nucleation, and growth. Based
on previous assumptions, the population of drops could be
classified into seven classes as shown in Table 2, similar to
that of Kumar et al.25 The drops, characterized either by a single
or two state variable indices, are referred to as univariate and
bivariate classes of drops, respectively. The state variables are
the number of molecules, which is a discrete number. This is
due to a very low occupancy of the number of molecules in a
drop. Therefore, the resulting PBE itself is discrete and obviates
the need for any further discretization, whereas continuous PBEs
have to be discretized for numerical solutions.32

3.2. Rules of Coalescence-Exchange.For bivariate drops,
each type of molecule is redistributed independent of the other.
The possible collision and binomial redistribution schemes are
summarized below.

1. Consider coalescence between two univariate drops from
the same class (nA andnA or nB andnB) or between univariate
and empty drops [nA andn(0) or nB andn(0)]. For example, if
nA(j) andnA(k) coalesce (Figure 2a), the expectation that one
of the daughter drops would geti out of (j + k) molecules is
given by

where,

(38) Rauscher, F.; Veit, P.; Sundmacher, K.Colloids Surf. A.2005, 254, 183.
(39) Towey, T. F.; Khan-Lodhi, A.; Robinson, B. H.J. Chem. Soc., Faraday

Trans.1990, 86, 3757.
(40) Smoluchowski, M. V.Phys. Z.1916, 17, 557.

A + B98
reaction

C (l)98
nucleation

C (s) V

kn(i,t) ) 0 for i < n*

) ik0 exp( - 16πσ3Vm
2

3(kBT)3[ln(λ(t))]2) for i gn* (1)

qd )
2kBT

3η [2 + (V1

V2
)1/3

+ (V2

V1
)1/3] (2)

qd )
8kBT

3η
(3)

Table 1. Time-Scale Analysis and Conclusions

time-scale
comparison conclusions

τr < τd • instantaneous reaction of A and B
• reactants A and B do not coexist in a drop

τg , τn(n*) • instantaneous growth of C(s) particle
• C(s) and C(l) do not coexist in a drop
• either none or one C(s) particle in a drop

τc ≈ τn(n*) • coalescence-exchange and nucleation rates are
comparable to each other and rate controlling

Table 2. Classification of Drops for the Bivariate PBE Model

class of drop
description:

(number density of drops having)

nA(i) i molecules reactant A
nB(i) i molecules reactant B
nCA(i, j) i molecules of C(l) andj molecules of reactant A
nCB(i, j) i molecules of C(l) andj molecules of reactant B
nSA(i, j) i molecules of C(s) andj molecules of reactant A
nSB(i, j) i molecules of C(s) andj molecules of reactant B
n(0) empty drops; none of A, B, C(l), or C(s)

E(i, j + k) ) pi,j+k + pj+k-i,j+k (4)

pi,j+k )
(j + k)!

i!(j + k - i)!(
1
2)j+k

(5)
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Therefore the other drop gets (j + k - i) molecules. Since the
drops are indistinguishable in this case, these two probabilities
should be same.

Hence,

2. Consider a drop containing a solid particle and any one
type of reactant molecules (nSA or nSB), coalescing with a
univariate drop having the same kind of reactant (nA or nB,
respectively). In this case the drops are distinguishable, because
the particle is retained in the original drop. For example, when
nA(l) andnSA(j,k) coalesce (Figure 2b), the expectation that a
daughter drop would geti number of A molecules out of
(k + l) is given by

3. When two same classes of drops each having a particle in
them (nSA and nSA or nSB and nSB) coalesce (Figure 2c), the
particles are retained in the respective parent drops. Only the
total reactant molecules are redistributed according to rule 2,
since the drops are distinguishable.

4. During coalescence of drops having opposite kinds of
reactants, a dimer could be formed with two kinds of molecules
[C(l) and the excess reactant in these two drops] in it. This
situation can occur due to coalescence of many different classes
of drops. For example, coalescence betweennA(k) and nB(l),
with k > l, would form a dimer withl number of C(l) and (k -
l) number of reactant A molecules (Figure 2d). Therefore, if a
dimer hasl molecules of type 1 andk molecules of type 2,
then the expectation for a drop to geti molecules of type 1 and
j molecules of type 2 on redistribution is given by

Since drops are indistinguishable,

5. For coalescence (Figure 2f) between drops, which contain
a particle and different kinds of reactants (nSA andnSB) between
themselves, both newly formed reaction product C(l) and the
excess reactant are redistributed independently between the
daughter drops. The particles grow instantaneously by consum-
ing the redistributed C(l) available to each drop. Therefore, for
a dimer containing two particles,k number of C(l) andl number
of reactant A (or B) molecules, the expectation for a daughter
drop to get i number of C(l) and j number of reactant A
(or B) is

6. Figure 2e shows the nucleation process of a drop
supersaturated with C(l) molecules. ThusnCA(i,j) nucleates when
i g n*.

3.3. Bivariate Population Balance Model.Population bal-
ance equations are conservation equations for the number
densities of different classes of drops. With the aforementioned
rules and finite rates of coalescence-exchange and nucleation,
the PBE for number density of bivariate classes of drops is

written as

For univariate drop classes (k ) A, B), nk(i, t) is used in the
above equation.Bk andDk are birth and death rates ofkth class
of drops due to coalescence-exchange and nucleation. For
example, the birth of a member of a particular class of drop
can be due to many different coalescence-exchange events
having finite probabilities to form this member. Conversely, a
single coalescence-exchange event can contribute as death terms
for two different classes of drops. As the total number of drops
is conserved, the number density of empty drops is calculated
by subtracting the sum of number densities of all other classes
from the initial total number density. Similarly nucleation of a
particle contributes as a death term in the CA or CB population
balance equation and simultaneously as a birth term in the SA
or SB population balance, respectively.

The number densities of all classes of drops are nondimen-
sionalized with respect to the total number density of drops as
follows,

The complete form of PBEs considering binomial redistribution
(eq 11) is given in Appendix A (see Supporting Information).
These equations can be suitably modified for cooperative
redistribution.

3.4. Univariate Population Balance Model.In some cases,
especially at low reactant concentrations, the mean numbers of
A and B reactant molecules per drop (µA, µB) are both less than
1. Under this condition, both the number densities of bivariate
drops and the rate of change of their number densities are very
low. So compared to univariate drops, contribution of bivariate
drops to the evolution of the nanoparticle size distribution is
not significant. This can be justified by a time-scale analysis of
the formation of bivariate drops as follows.

We use the Poisson distribution of both A and B reactant
molecules in the drops at timet ) 0. Bivariate drops are more
likely to appear when any drop having two or more reactant
molecules of either kind (A or B) coalesce with another
nonempty drop. Coalescence-exchange amongn(0), nA(1), and
nB(1) class of drops (Table 3) results in the formation of
univariate drops, the latter containing either reactant or product
molecules. In general, time scale of coalescence-exchange events
of drops havingi number of reactant molecules is given by
1/[âdqdn(i)]. Therefore, the time scale of formation of the
bivariate population is given by

Noting that

and nondimensionalizing individual number densities withNdrop,

E(i, j + k) ) 2 pi,j+k (6)

Ẽ(i, k + l) ) pi,k+l (7)

E(i, l; j, k) ) pi,l pj,k + pl-i,l pk-j,k (8)

E(i,l; j,k) ) 2pi,l pj,k (9)

Ẽ(i,k; j,l) ) pi,k pj,l (10)

dnk(i, j, t)

dt
) Bk(t) - Dk(t) for k ) CA, CB, SA, SB (11)

njk(i, t) )
nk(i, t)

Ndrop
(12)

τb )
1

âdqd(∑
i)2

∞

[nA(i) + nB(i)])

(13)

n(0) + ∑
i)1

∞

[nA(i) + nB(i)] ) Ndrop (14)
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from eq 13 we have

Using the initial distribution of reactant molecules to be Poisson,

from eq 15,

Nondimensionalizingτb with the total coalescence time scale

Figure 2. Coalescence-exchange of drops involving univariate and bivariate distributions.

τb ) 1
âdqdNdrop[1 - nj(0) - njA(1) - njB(1)]

(15) τb ) 1

âdqdNdrop(1 - 1
2
e-µA(1 + µA) - 1

2
e-µB(1 + µB))

(16)
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involving drops of all kinds [τc ) 1/(âdqdNdrop)], we get

For the special case ofµA ) µB ) µ, eq 17 becomes

Therefore, whenµ is small,τjb is high, and bivariate drops form
very slowly. Number densities of bivariate drops then remain
negligibly small, and the univariate model can be fairly
satisfactory. From Table 4, forµ ) 0.1, the rate of formation
of bivariate drops is two orders of magnitude slower than that
of univariate drops, making the former negligible. This conclu-
sion is true even forµ ) 0.5. However, asµ becomes 1, bivariate
drops form almost at the same time scale as that of univariate
drops, so that the bivariate population becomes non-negligible.
For µ ) 2, the bivariate population is certainly important, as
both classes of drops form with similar time scales.

Based on this pseudo steady state approximation then, it is
sufficient to consider only the univariate drop populations, under
certain conditions. Therefore, a univariate PBE model (derived
from the bivariate model of section 3.3) can be used without
loss of much accuracy. So we define a total of five univariate
drop classes (Table 3), compared to seven drop classes for the
bivariate model (Table 2). PBEs for the univariate model are
written (Appendix B, see Supporting Information) neglecting
all the coalescence events that would result in the generation
of bivariate populations. The coalescence-exchange rules defined
for the bivariate model also apply to the univariate PBE model.

3.5. Initial Conditions and Solution Methodology. It is
known that coalescence-exchange with binomial redistribution
gives rise to Poisson distribution in the number of reactant
molecules per drop at steady state.36 So the initial reactant
distribution in drops of each microemulsion, before mixing, is
calculated from Poisson distribution as follows:

which after mixing equal volumes of these two microemulsions
become

The nondimensional number density of empty drops at time
t ) 0 is obtained as follows:

while for all the other classes of drops it is zero.

The average volume equivalent spherical diameter of particle
population is calculated by

For the bivariate PBE model,iav is calculated as follows.

The set of coupled first-order ordinary differential eqs A1, A2,
A3 and similar equations fornjB(i), njCB(i,j), andnjSB(i,j) (as in
Appendix A) are solved numerically by the Runge-Kutta
method41 using initial conditions from eqs 21-24, to obtain the
mean aggregate number (MAN), which is also proportional to
the mean particle size, and complete particle size distribution
(PSD) from this model. The number of terms in any of the
infinite summation series (of equations given in Appendices A
and B) are truncated at some positive integerZmax, such that
further increase inZmax does not change the result (e.g., MAN,
PSD, etc.) to any significant extent. Typical values ofZmax used
for different cases are 40-70.

In the univariate PBE model,iav can be calculated in a simple
way. It is possible to writenth moment of number density (njS)
in a closed form, which is

Zeroth and first moments ofnjS (eqs B5 and B6) are derived
from eqs B4 and 27. Equations B1-B3, B5, and B6 are then
solved together as part of the univariate model. For initial
conditions we use eqs 21-23, with zero for other population
number densities and moments. Afterward,iav is calculated from

(41) Gupta, S. K.Numerical Methods for Engineers; New Age International
Ltd.: New Delhi, 1995.

Table 3. Classification of Drops for the Univariate PBE Model

class of drop
description:

(number density of drops having)

nA(i) i molecules of reactant A
nB(i) i molecules of reactant B
nC(i) i molecules of C(l)
nS(i) i molecules of C(s)
n(0) empty drops; none of A, B, C(l), or C(s)

τjb ) 1

(1 - 1
2
e-µA(1 + µA) - 1

2
e-µB(1 + µB))

(17)

τjb ) 1

[1 - e-µ(1 + µ)]
(18)

nA
0(i) ) Ndrop,A

e-µA µA
i

i!
for i ) 0, 1, 2, 3,... (19)

nB
0(i) ) Ndrop,B

e-µB µB
i

i!
for i ) 0, 1, 2, 3,... (20)

nA(i;t ) 0) ) 1
2
nA

0(i) for i ) 1, 2, 3... (21)

nB(i;t ) 0) ) 1
2
nB

0(i) for i ) 1, 2, 3... (22)

Table 4. Dependence of Time Scale of Formation of Bivariate
Drops (τjb) on Mean Number of Reactant Molecules Per Drop (µ)

µ τ̄b

0.1 O(102)
0.5 O(10)
1 O(4)
2 O(1)

nj(0; t ) 0) ) 1 - ∑
i)1

∞

njA(i;t ) 0) - ∑
i)1

∞

njB(i;t ) 0) (23)

njk(i, j; t ) 0) ) 0 for k ) CA, CB, SA, SB (24)

dav(t) ) [6iav(t)MW

πFNA
]1/3

(25)

iav(t) )

∑
i)n*

Zmax

∑
j)0

Zmax

injSA(i, j, t) + ∑
i)n*

Zmax

∑
j)1

Zmax

injSB(i, j, t)

∑
i)n*

Zmax

∑
j)0

Zmax

njSA(i, j, t) + ∑
i)n*

Zmax

∑
j)1

Zmax

njSB(i, j, t)

(26)

MS
(n)(t) ) ∑

i)n*

∞

innjs(i,t) n ) 0,1,2,3... (27)

A R T I C L E S Ethayaraja and Bandyopadhyaya

17108 J. AM. CHEM. SOC. 9 VOL. 128, NO. 51, 2006



the ratio of first moment to zeroth moment ofnjS as follows.

Results and Discussion

4.1. Comparison of Bivariate Model Results with Experi-
ments.Experiments of Lianos and Thomas14 on the preparation
of CdS nanoparticle by the method of two microemulsions are
compared with the results of the PBE models of this paper and
both previous27 and new MC simulation results. These experi-
mental data had been earlier simulated by Bandyopadhyaya et
al.27 using MC simulation with binomial redistribution, to which
we have now added the results of MC simulation with
cooperative redistribution, for assessing the role of redistribution.
The PBE model formulation is consistent with MC simulation,
except that the former is deterministic, while the latter is
stochastic in nature. All the parameters and constants used in
the model and simulation are given in Table 5.

In the experiments,14 two water/AOT/heptane microemul-
sions, one containing cadmium perchlorate and the other
containing sodium sulfide, are mixed to form CdS nanoparticles.
Nanoparticle size was reported in terms of MAN of CdS
nanoparticles, which is measured from emission quenching of
CdS. Experiments were conducted for various molar ratios of
water to surfactant (R) and molar ratios (x) of [Cd2+] to [S2-].
Comparison of the final value [after 100% conversion to CdS
nanoparticle] of MAN from experiment, bivariate PBE model,
and MC simulation is shown in Figure 3a and 3b forR ) 5
and R ) 32, respectively. The mean number of reactant
molecules per drop for theseRandx values are shown in Table
6. Both the model and simulation results predict the same MAN
(and hence same CdS particle size) for allR, x, and redistribution
modes, establishing the close connection between PBE and MC,
and validating both these approaches for predicting the nano-
particle synthesis mechanism. In addition, a reasonably good
agreement with experiments is observed from both PBE and
MC results when binomial redistribution is used (Figure 3). For
example, in Figure 3a, forx ) 2 and 10, both the PBE and MC
results compare well with experiments, but forx ) 5, there is
some deviation. Furthermore, in Figure 3b, for bothx ) 2 and
10, there is excellent agreement between experiments with PBE

and MC with binomial redistribution. Finally, both PBE and
MC calculations very well reproduce the experimental trend of
increasing MAN (and hence particle size) with an increase in
R (i.e., drop size). This is clearly evident on comparing the
increasing trend in MAN from Figure 3a to 3b.

The redistribution mode of molecules is crucial in nanoparticle
formation, because reaction, nucleation, and growth are all
functions of the occupancy of reactant and product molecules
in a drop, distributions of which among drops change continu-
ously due to coalescence-exchange. The cooperative mode
compared to binomial redistribution or experiments results in a
very much underpredicted MAN (Figure 3a and 3b). This is
because, in cooperative redistribution, reactant and product
molecules are preferentially transferred to one of the drops after
redispersion of the dimer. This leads to more drops having
critical nuclei and an increased nucleation rate, making less C(l)
molecules available for growth, given the same amount of total
product. As a consequence, a greater number of particles with
less MAN (or particle size) is obtained in the cooperative mode,

Table 5. Parameters Used in the PBE Models and MC Simulation

variables valuesa

ddrop(R ) 5) 4.2× 10-9 m
ddrop(R ) 32) 15.2× 10-9 m
k0 278.42 s-1

Ks 3.6× 10-29 mol2 L-2

N 100 000
n* 2
Ndrop(R ) 5) 1.084× 1024 m-3

Ndrop(R ) 32) 1.566× 1023 m-3

qd 1.097× 10-17m3 s-1

T 298 K
Vm 5.24× 10-29m3

âd (R ) 5, x ) 2, 5, 10) 10-4

âd (R ) 32,x ) 2) 0.10
âd (R ) 32,x ) 10) 0.01
η 0.001 kg m-1 s-1

σ 0.1 N m-1

a Values are taken from ref 27.

Figure 3. Comparison of the final mean aggregate number (MAN) from
the bivariate PBE model and MC simulation with experiments. (g)
Experiment;14 (b) PBE-binomial; (O) MC-binomial;27 (9) PBE-cooperative;
(0) MC-cooperative. Note that some data points exactly overlap each other.

Table 6. Mean Number of Reactant Molecules at Various R and x
Values (Used in Experiments14 and in Our Parametric Study)

R x [Cd2+], M µCd [S2-], M µS remarks

{ 1a 0.001 0.555 0.001 0.555 Figure 4a-4c
1a 0.002 1.110 0.002 1.110 ”
1b 0.005 2.775 0.005 2.775 ”

5 1b 0.010 5.550 0.010 5.550 ”
2a 0.001 0.555 0.0005 0.2775 Figures 3a-3b and 6a-6b
5a 0.0005 0.2775 0.0001 0.0555 ”
10a 0.001 0.555 0.0001 0.0555 ”

32 { 2a 0.0002 0.7692 0.0001 0.3846 ”
10b 0.001 3.8460 0.0001 0.3846 ”

aµ < n*. b µ > n* since n* ) 2.

iav(t) )
MS

(1)(t)

MS
(0)(t)

(28)
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compared to the experimentally proven correct mode of binomial
redistribution.

4.2. Effect of Reactant Concentration.The productivity of
nanoparticles can be increased by increasing the initial concen-
tration of reactants. However, reactant concentration also affects
average nanoparticle size (dav) and particle size distribution
(PSD). Therefore, the questions that need to be answered are
how reactant concentration affectsdav and PSD and in what
range of concentrations is the effect more significant. For
example, it may be of interest to synthesize a large quantity of
nanoparticles without changingdav and PSD. With this motiva-
tion, a range of concentrations is analyzed, and corresponding
µ values are given in Table 6. The chosen reactant concentra-
tions span the rangeµ < n* to µ > n*, as shown in footnotes
for Table 6.

The total mass of product increases proportionally with
reactant concentration in Figure 4a to 4c. Figure 4a shows
buildup of C(l) andNp with time, for various Cd2+ concentra-
tions, atR ) 5 andx ) 1. As the concentration is increased, a
larger amount of C(l) is formed at a faster rate. However, since
the nucleation rate increases with occupancy, the extra C(l)
formed at short times for higher concentrations depletes equally
faster into CdS nanoparticles. This is evident from the shape of
C(l) curves, which are much more shallow at lower concentra-
tions, due to both slower buildup of C(l) and slower nucleation
over a longer period of time compared to C(l) curves at higher
concentrations. Figure 4a also shows the expected increase in
the final value ofNp with reactant concentration.Np saturates
at shorter times for higher concentrations, compared to that for
lower concentrations. This is due to the same reason of increased
nucleation rate in the former case.

As shown in Figure 4b,dav also increases with reactant
concentration. Therefore, we conclude from Figures 4a and 4b
that the availability of more C(l) due to an increase in
concentration increases both the extent of nucleation and growth
by coalescence-exchange, and henceNp anddav, respectively.
Nevertheless, whenµ < n*, the effect is more pronounced on
nucleation than growth, so as to increaseNp, rather thandav.
Hence, under this condition ofµ < n*, the productivity of
nanoparticles can be increased without any appreciable change
in dav. For higher concentrations (µ > n*), both Np and dav

increase appreciably, which have generally been observed in
experiments12,16 and other modeling studies21,25,42also.

Since we solve for individual number densities in our bivariate
PBE model, rather than only moments, we also obtain the PSD
from the model (Figure 4c). At lower reactant concentrations
(µ < n*), due to the nature of the Poisson distribution, the
number density of drops havingn* or more number of C(l)
molecules will be very low. Therefore, only a few drops can
have a nucleus, while C(l) molecules present in other drops
(those where the number of C(l) molecules is less thann*)
contribute to the growth of existing nuclei. The size distribution
of nuclei will be narrow because most of them form with a size
corresponding ton* number ofC(l) molecules. In addition, the
potential number of drops which can have a nucleus increases
with reactant concentration. Therefore, whenµ < n*, increasing
concentration favors a larger number of nearly equal sized
nuclei, so that the PSD does not change (first two curves in
Figure 4c). In contrast, for higher reactant concentrations (µ >

n*), the number density of drops havingn* or more number of
C(l) molecules is much more, resulting in a wider distribution
in nuclei size. Previous time-scale analysis (section 3.1) shows
that nucleation and nanoparticle growth by coalescence-
exchange of drops are competitive processes. Hence, the
availability of more C(l) molecules (by way of increased reactant
concentration) in this case is used for both nucleation and
growth. Therefore, whenµ > n*, increased reactant concentra-
tion results in a wider PSD (last two curves in Figure 4c) because
of these two combined effects. The latter trend has also been
reported by others from their experiment12 and PBE models.21,25

4.3. Effect of Molar Ratio of Reactants.Lianos and Thomas
reported14 that if CdS nanoparticles are synthesized with excess
cadmium ions, the emission property of CdS gets enhanced.(42) Tojo, C.; Blanco, M. C.; Lopez-Quintela, M. A.Langmuir1997, 13, 4527.

Figure 4. Effect of reactant concentration on (a) temporal evolution of
number of nanoparticles formed and buildup of C(l), (b) temporal evolution
of average particle size, and (c) final particle size distribution (PSD) atR
) 5 andx ) 1, from the bivariate PBE model with binomial redistribution.
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This finding is technologically important because improved
photoemission is desired for device fabrication. On the other
hand, synthesizing nanoparticles with an excess of one of the
reactants affectsdav, which itself causes variation in photo-
emission. Now excess reactant affects the rate of formation of
C(l) and hence the nucleation rate anddav. It is, therefore,
essential to understand the role of an excess reactant ondav. At
R ) 5, for a fixed [S2-] concentration ofC ) 0.002 M, the
effect of varyingx in the experimental range from 1 to 10 is
shown in Figure 5a-5c. In comparing these cases, we need to
remember that the relative rates of formation and loss of C(l)
via coalescence-exchange and nucleation varies; however there
is no change in the total mass of CdS particles formed. At higher

x, buildup of C(l) is faster leading to a higher nucleation rate.
Hence,Np increases withx (Figure 5a) up tox ) 5, after which
further increases inx have no additional effect.

Figure 5b shows the evolution of particle size (dav) as a
function of time under the same conditions but with different
amounts of excess reactant. Since the nucleation rate is enhanced
at higherx, dav decreases withx as the total amount of product
CdS is constant. However, this effect is insignificant beyondx
) 5, and the average particle size does not change anymore. It
is known that physicochemical properties (photoemission) of
nanoparticles depend on bothdav andx. Lianos and Thomas14

has shown that the intensity of emission spectra increases
continuously fromx ) 2 to 10. However, from Figure 5b we
know thatdav does not change beyondx ) 5. Therefore, further
increase in photoemission observed by those authors is due to
adsorption of the excess Cd2+ ion on the surface of the CdS
nanoparticle. Our model hence clearly brings out the role and
extent of excess reactant to be used, for a beneficial increase in
emission intensity of CdS. Furthermore, Figure 5c shows that
whenx is increased from 1 to 5, the final size distribution of
CdS nanoparticles shifts slightly toward smaller sizes, concomi-
tant to the decrease indav (Figure 5b), but no apparent change
in width of the distribution. Finally, there is no further change
in eitherdav or PSD forx > 5 (Figure 5c).

4.4. Comparison of Univariate and Bivariate Model
Results with Experiments.In Figure 6a and 6b, results of the

Figure 5. Effect of molar ratio of reactants on (a) temporal evolution of
number of nanoparticles formed and buildup of C(l), (b) temporal evolution
of average particle size, and (c) final particle size distribution (PSD) atR
) 5 and [S2-] ) 0.002 M, from the bivariate PBE model with binomial
redistribution.

Figure 6. Comparison of the final mean aggregate number (MAN) from
bivariate and univariate PBE models (binomial mode) with experiments.
(f) Experiment;14 (O) Bivariate PBE; (4) Univariate PBE. Note that some
data points exactly overlap each other.
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univariate PBE model are compared with those of the bivariate
PBE model and experiments.14 Results of both the models
compare nearly exactly with each other at allx values forR )
5 but only atx ) 2 for R ) 32. However, atx ) 10 forR ) 32,
there is clearly some deviation (Figure 6b). Therefore, our
simplifications in deriving the univariate model do not introduce
any significant error in the prediction of the final MAN (i.e.,
particle size) in a certain range of synthesis conditions. For
example, forR ) 32 andx ) 10,µA ) 3.846 andµB ) 0.3846.
In such cases, the assumptions of pseudo steady state ap-
proximation for bivariate populations are not correct. Therefore,
the bivariate populations that are neglected in the univariate
model may be significant.

To establish the range of applicability of the univariate PBE
model, results from it are compared with those of the bivariate
model for variousµ values (ranging from 0.05 to 3), atR ) 5
and x ) 1 (Figure 7a and 7b). In the rangeµ ) 0.05 to 0.5,
both model predictions agree nearly exactly to each other, not
only with respect to final values ofdav andNp but also in their
temporal evolution. Forµ ) 1, the final particle size of both
the models match (Figure 7a) but a maximum error of 5% in
the evolution ofdav is observed. However, forµ > 1, this error
in temporal evolution ofdav becomes progressively more,
although final particle size still compares very well with that
from the bivariate model, within an error of 1% only. Similarly,
for all µ values studied, the finalNp predicted from the univariate
model matches exactly with that from the bivariate model.
However, for µ > 1, the univariate model compared to the
bivariate model shows a delayed nucleation, causing a difference
in temporal evolution ofNp, and hence that ofdav too. Therefore,

the univariate model can be used when bothµA and µB e 1.
The successful prediction of experimental data for allx values
at R ) 5 (Figure 6a) is attributed to the fact thatµ < 1 in these
cases, for both the reactants.

So the bivariate PBE model predicts experimental data quite
reasonably for a wide range ofR and x values, while the
univariate PBE model predicts final values very well for all
cases, but the temporal evolution, only whenµ < 1 for both
reactants. However, the number of equations to be solved in
the univariate model is reduced to∼3Zmax from ∼2Z2

max

equations of bivariate model. This is because there are only
univariate populations, with bivariate drops and consequently
their number density equations being eliminated. This step also
simplifies the remaining equations (compare eqs A1 with B1,
A2 with B3, and A3 with B4), as a large number of terms in
the bivariate PBEs drop out. Furthermore, withZmax in the range
of 40 to 70, this is a reduction in the number of equations by
nearly two orders of magnitude. Both these facts together led
to a reduction in computational time from 6 to 8 h for the
bivariate model to less than a minute for the univariate model,
in a computer with a 3.4 GHz Pentium IV processor. Although
the univariate model does not provide the complete PSD, as in
the bivariate version, the standard deviation of the PSD can be
calculated in the former by solving higher order moments of
njS.

5. Conclusions

A deterministic bivariate population balance equation (PBE)
based model has been formulated to predict the nanoparticle
size distribution synthesized by mixing two reactive w/o
microemulsion solutions. Both the solutions contain predissolved
reactants. Therefore, nanoparticle formation in this self-as-
sembled, confined system involves coalescence-exchange of
water drops and reaction of drop contents, followed by
nucleation and growth of nanoparticles within the drop. Time
scales calculated based on the rates of these elementary events
show that reaction and growth are instantaneous, compared to
coalescence-exchange and nucleation. We have implemented
for the first time in such a model the correct mechanism of
binomial redistribution of molecules after collision between
water drops, which is shown to have a significant impact on
model predictions. Experimental data14 on the mean aggregate
number (MAN) and hence the size of CdS nanoparticles, under
various synthesis conditions, like different molar ratios of
reactants (x) and molar ratios of water to surfactant (R) are
predicted reasonably well by the bivariate PBE model. The
model results are also in excellent agreement with those of
previously published27 and new Monte Carlo (MC) simulations
carried out in this work, predicting experimental CdS synthesis
data.14

The importance of the mode of redistribution of molecules
on nanoparticle formation is also elucidated in the present work.
The cooperative redistribution mechanism (used previously25)
underpredicts experimental particle size (or MAN), while the
binomial redistribution mode used in this work shows a good
comparison with experiments. This highlights the need to
account for the correct redistribution mechanism in nanoparticle
formation.

(43) Rosner, D. E.; Pyykonen, J. J.AICHE J.2002, 48, 476.

Figure 7. Comparison of bivariate and univariate PBE models (binomial
mode) for various mean numbers of reactant molecules (µ) at R ) 5 andx
) 1. (a) Evolution of average particle size with time. (b) Evolution of
number of nanoparticles with time.
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Model calculations showed that for a low reactant concentra-
tion (µ < n*), with a stoichiometric reactant ratio (x )1), the
final mean CdS particle size does not change appreciably on
increasingµ. However, the number of particles formed increases
proportionally with reactant concentration. Therefore the pro-
duction rate of nanoparticles can be increased without affecting
final particle size. In contrast, for higher concentrations (µ >
n*), both CdS particle size and number of particles increase,
while particle size distribution (PSD) broadens out, with a tail
in the PSD at higher sizes. These trends captured by our model
are validated by other experiments,12,16lending further credence
to the generality of our model. It is known that excess Cd2+

ion can adsorb on CdS nanoparticle surface during synthesis
and cause a favorable enhancement in emission intensity.
Therefore, to assess the role of using an excess of Cd2+ ion,
we fixed the concentration of the limiting reactant [S2-] at 0.002
M and increasedx from 1 to 10. Fromx ) 1 to 5, the final
mean CdS particle size decreases, with a concomitant increase
in the number of particles, implying an enhanced nucleation
compared to growth. A further increase fromx ) 5 to 10 has
no additional effect on the number, mean size, or final particle
size distribution of CdS. So the experimentally observed increase
in emission intensity of CdS forx > 5 is purely due to surface
adsorption of excess Cd2+ ions, and not due to any particle size
induced effect.14 Thus, the present work shows how to tune
experimental conditions to produce CdS nanoparticles of desired
size. This, when combined with previous molecular simulation
studies of correlating CdS cluster or nanoparticle structure with
properties,5 can provide a powerful tool for designing specific
CdS nanomaterials.

A computationally efficient univariate PBE model employing
a set of univariate drops has also been developed. It is derived
by making a pseudo steady state approximation in the bivariate
model. Time-scale analysis offers a good a priori choice of the

appropriate model (based on range ofµ for both the reactants)
for the nanoparticle synthesis process at hand. Indeed, for the
CdS case studies discussed in this paper, we find that the
univariate model is very well applicable whenµ < 1; and maybe
even up toµ ) 1 with only a small deviation from the complete
bivariate model. Under the conditionµ < 1 for both the
reactants, the univariate model yields very good predictions for
both temporal evolution and final particle characteristics.

The univariate model has several advantages over the
bivariate model. First, forµ < 1, the bivariate model need not
be used, eliminating many classes of drops from our consider-
ation. Second, the univariate model can be solved using moment
transformation, instead of solving for individual number densi-
ties [like,njSA(i,j) andnjSB(i,j)], thus reducing computation time
significantly. For modeling continuous flow processes involving
nanoparticle formation, PBE models are coupled to the transport
equations of mass, momentum, and energy balance.43 A univari-
ate PBE model will be desirable in these cases to perform a
rapid assessment of the flow reactor performance and quality
of the nanoparticulate product obtained thereof. Although the
univariate model will not provide complete PSD like the
bivariate model, the standard deviation can still be calculated
in the former by solving higher order moments ofnjS.
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